
CS6200 
Information Retrieval

Jesse Anderton 
College of Computer and Information Science 

Northeastern University



Query Process



Review: Ranking
• Ranking is the process of selecting which documents to show the user, and in 

what order 

• Rankers are generally developed with a certain retrieval model in mind. The 
retrieval model provides base-line assumptions about what relevance means: 

➡ Boolean Retrieval models assume a document is entirely relevant or non-
relevant, and compose queries using set operations (AND, OR, NOT, XOR, 
NOR, XNOR). 

➡ Vector Space Models treat a document or a query as a vector of weights for 
each vocabulary word, and find document vectors that best match the query’s 
vector. 

➡ Language Models construct probabilistic models that could generate the text 
of a query or document, and compare the likelihood that a document and 
query were generated by the same model. 

➡ Learning to Rank trains a machine learning algorithm to predict the relevance 
score for a document based on some fixed set of document features.



Review: Vector Space Models
• Vector Space Models treat a document or a query as a vector of weights for each 

vocabulary word, and find document vectors that best match the query’s vector. 

• These models consider each term independently of the others, and so do not consider 
information about noun phrases (“White House”) or other important linguistic constructs. 

• The main differences between vector space models are in the particular term weights 
and similarity functions used. 

• The term weight should generally be larger when the term contributes more to the theme 
of the document. 

➡ TF-IDF is a heuristic which combines document importance with corpus importance. 

➡ BM25 is a Bayesian formalization of TF-IDF which also considers document length. 

• The similarity function should be larger for documents that better satisfy a query’s 
(hidden) information need. 

➡ Cosine Similarity compares the angles of the vectors while ignoring their 
magnitude. Matching many high-weight terms leads to a better score.
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Language Models
• Language Models construct probabilistic models that could generate the text of 

a query or document, and compare the likelihood that a document and query 
were generated by the same model. 

• These models can handle more complicated linguistic properties, but often take 
a lot of data and time to train. Often, some training must happen at query time. 

• A language model is a function which assigns a probability to a block of text. In 
IR, you can think of this as the probability that a document is relevant to a query. 

➡ Unigram Language Models estimate the probability of a single word (a 
“unigram”) appearing in a (relevant) document. 

➡ N-gram Language Models assign probabilities to sequences of n words, 
and so can model phrases. The probability of observing a word depends on 
the words that came before it. 

➡ Other language models can model different linguistic properties, such as 
parts of speech, topics, misspellings, etc.



Language Models in IR
• There are three common techniques for retrieval with language 

models: 

1. Fit a model to the query and estimate document likelihood: 

!

2. Fit a model to the document and estimate query likelihood: 

!

3. Jointly model query and document: 

!

• You can also model topical relevance, as we will discuss later



Ranking by Query Likelihood
• Rank documents based on the likelihood that the model 

which produced the document could also generate the 
query. 

• Our real goal is to rank by some estimate of 

• To find that, we can apply Bayes’ Rule and get: 

!

• If we assume the prior is uniform (all documents equally 
likely) and use a unigram model, we get: 



Estimating Probabilities
• The obvious estimate for term probability is the maximum 

likelihood estimate: 

!

• This maximizes the probability of the document by 
assigning probability to its terms in proportion to their 
actual occurrence. 

• The catch: if                      for any query term, then 

!

• This takes us back to Boolean Retrieval: missing one term 
is the same as missing all the terms.



Smoothing our Estimates
• We imagine our document is a sample drawn from a particular 

language model, and does not perfectly characterize the full 
sample space. 

• Words missing from the document should not have zero probability, 
and estimates for words found in the document are probably a bit 
too high. 

• Smoothing is a process which takes some excess probability from 
observed words and assigns it to unobserved words. 

➡ The probability distribution becomes “smoother” – less “spiky.” 

➡ There are many different smoothing techniques. 

➡ Note that this reduces the likelihood of the observed documents.



Generalized Smoothing
• Most smoothing techniques can be expressed as a 

linear combination of estimates from the corpus c 
and from a particular document d: 

!

• Different smoothing techniques come from different 
ways of finding the parameter   .



Jelinek-Mercer Smoothing
• In Jelinek-Mercer Smoothing, we set    to some constant,   

!

• This makes our model probability: 

!

• A document’s ranking score is: 

!



This is close to TF-IDF!

This ranking score is proportional to TF and inversely proportional to DF.



Dirichlet Smoothing
• In Dirichlet Smoothing, we set    based on document 

length: 

!

• This makes our model probability: 

!

• A document’s ranking score is: 

!



Dirichlet Smoothing Example
• Consider the query “president lincoln.” 

• Suppose that, for some document: 

!

!

!

• Number of terms in the corpus is based on 2000 terms 
per document, on average, times 500,000 documents. 



Dirichlet Smoothing Example



Dirichlet Smoothing Example

Frequency of 
“president”!

Frequency of 
“lincoln” QL Score

15 25 -10.53

15 1 -13.75

15 0 -19.05

1 25 -12.99

0 25 -14.40
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Topic Models
• A topic can be represented as a language model. 

➡ The probability of observing a word depends on 
the topic being discussed. 

➡ Words more strongly associated with a topic will 
have higher model probabilities. 

• A topic model is commonly a multinomial distribution 
over the vocabulary, conditioned on the topic. 

➡ Often works well, but can’t (easily) handle ngrams.



Topic Models
• Interpreting topic models 

➡ Improved representation of documents: a document is a collection 
of topics rather than of words 

➡ Improved smoothing: a document becomes relevant to all words 
related to its topics, whether they appear in the document or not 

• Approaches to modeling (latent) topics 

➡ Latent Semantic Indexing (LSI) – heuristic, based on decomposition 
of document term matrix 

➡ Probabilistic Latent Semantic Indexing (pLSI) – a probabilistic, 
generative model based on LSI 

➡ Latent Dirichlet Allocation (LDA) – an extension of pLSI which adds 
a Dirichlet prior to a document’s topic distribution



Goals of Topic Modeling

Topic models are applied to manage the following 
linguistic behaviors:



Text Reuse



Topical Similarity



Parallel Bitext
Genehmigung des Protokolls 
Das Protokoll der Sitzung vom 
Donnerstag, den 28. März 1996 
wurde verteilt. 
Gibt es Einwände? 
Die Punkte 3 und 4 widersprechen 
sich jetzt, obwohl es bei der 
Abstimmung anders aussah. 
Das muß ich erst einmal klären, Frau 
Oomen-Ruijten.

Approval of the minutes 
The minutes of the sitting of 
Thursday, 28 March 1996 have been 
distributed. 
Are there any comments? 
Points 3 and 4 now contradict one 
another whereas the voting showed 
otherwise. 
I will have to look into that, Mrs 
Oomen-Ruijten. 

Koehn (2005): European Parliament corpus



Multilingual Topic Similarity



How do we represent topics?
• Bag of words? Ngrams? 

➡ Problem: there is a lot of vocabulary mismatch for 
a topic within a language (jobless vs. 
unemployed) 

➡ The problem is even worse between languages. 
Do we need to translate everything to English 
first? 

• Topic modeling represents documents as 
probability distributions over hidden (“latent”) 
topics.



Modeling Text with Topics
• Most modern topic models extend Latent Dirichlet Allocation (Blei, 

Ng, Jordan 2003) 

• The corpus is presumed to contain T topics 

•  Each topic is a probability distribution over the entire vocabulary 

• For D documents, each with ND words:

Τ

D

N

β Priorz wθPrior

80% economy 
20% pres. elect. economy “jobs”



Topics →

1 2 3 4 5 6 7 8

Griffiths et 
al.

Top Words By Topic



Topics →

1 2 3 4 5 6 7 8

Griffiths et 
al.

Top Words By Topic



LDA
A document is modeled as being generated from a mixture of topics:



LDA
• Gives language model probabilities 

!

• Can be used to smooth the document representation 
by mixing them with the query likelihood probability, as 
follows:



LDA
• If the LDA probabilities are used directly as the 

document representation, the effectiveness will be 
significantly reduced because the features are too 
smoothed 

➡ In a typical TREC experiment, only 400 topics are 
used for the entire collection 

➡ Generating LDA topics and fitting them to 
documents is expensive 

• However, when used for smoothing the ranking 
effectiveness is improved



LDA Example
• If the LDA probabilities are used directly as the 

document representation, the effectiveness will be 
significantly reduced because the features are too 
smoothed 

➡ In a typical TREC experiment, only 400 topics are 
used for the entire collection 

➡ Generating LDA topics and fitting them to 
documents is expensive 

• However, when used for smoothing the ranking 
effectiveness is improved



LDA Example
Top words from 4 LDA topics from a TREC news corpus:
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Relevance Models
• A relevance model is a language model representing 

the user’s information need 

➡ The query and the relevant documents are 
considered samples from this model 

• The probability of generating the text in a document 
given a relevance model is denoted 

➡ This is a document likelihood model 

➡ Less effective than query likelihood due to difficulties 
comparing across documents of different lengths



Pseudo-Relevance Feedback
• Fit a relevance model to a query and the top-ranked 

documents 

• Then rank documents by the similarity between their 
document models and the relevance model 

• The two models can be compared using Kullback-
Leibler divergence (KL-divergence), an information 
theoretic measure which gives the difference between 
two probability distributions



KL-Divergence
• Given a true probability distribution P, how close is some 

approximation Q of that distribution? 

!

➡ This is not symmetric! 

• For pseudo-relevance feedback: 

➡ P is the relevance model R 

➡ Q is the document’s distribution 

➡ We rank documents by their (negative) KL-divergence



KL-Divergence
• If we use a maximum likelihood unigram language 

model for the relevance model, the ranking score is: 

!

!

• This is rank-equivalent to the query likelihood score. 

• The query likelihood model is a special case of 
retrieval based on a relevance model.



Estimating the Relevance Model
• The probability of pulling word w out of the “bucket” 

representing the relevance model depends on the n 
query words we have just pulled out: 

!

• By definition,



Estimating the Relevance Model
• The joint probability is: 

!

• If we assume: 

!

• That gives:



Interpreting the Relevance Model
•          is usually assumed to be uniform 

•                          is a weighted average of the language 
model probabilities for w in a set of documents 

➡ The weights are the query likelihood scores for those 
documents 

• This gives a formal model for pseudo-relevance feedback 

• This also gives a query expansion technique



Pseudo-Feedback Algorithm



Example from 10 Docs



Example from Top 50 Docs
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Combining Evidence
• No single ranking score has been found which produces 

satisfactory performance for all queries. 

• Effective retrieval requires combining many pieces of evidence 
about a document’s potential relevance. 

➡ We have focused so far on simple word-based evidence 

➡ There are many other types: document structure, PageRank, 
metadata, even scores from multiple relevance models 

• An inference network is one approach for combining this 
evidence, based on Bayesian networks (aka Bayes Nets)



Inference Network



Inference Network
• A document node (D) represents the random event that a 

document is observed 

• Representation nodes (ri) are document features (evidence) 

➡ The probabilities associated with those features are based 
on language models θ estimated using parameters μ 

➡ We train one language model for each significant document 
feature/structure 

➡ The ri nodes can represent proximity features or other types 
of evidence (e.g. date)



Inference Network
• Query nodes (qi) are used to combine evidence from 

representation nodes and other query nodes. 

➡ They represent the occurrence of more complex 
evidence and document features. 

➡ A number of combination operators are available. 

• The information need node (I) is a special query node that 
combines all of the evidence from the other query nodes. 

➡ The network computes 



a and b are parent nodes for q

Example: AND Combination



Example: AND Combination
• Combination operators must compute all possible 

states of all their parents. 

• Some combinations can be computed efficiently.



Inference Network Operators



Web Search
• The most important, but not the only, search application 

• Has major differences as compared with research applications, such 
as TREC news: 

➡ Collection size 

➡ Connections between documents 

➡ Range of document types 

➡ The importance of spam 

➡ Query volume 

➡ Range of query types



Search Taxonomy
• Informational Queries 

➡ Finding information about some topic which may be found on one or 
more web pages 

➡ Topical search 

• Navigational (“Page Finding”) Queries 

➡ Finding a particular web page that the user has either seen before, 
or assumes to exist 

• Transactional (“e-commerce”) Queries 

➡ Finding a site where a task such as shopping or downloading music 
can be performed



Web Search
• For effective navigational and transactional search, need 

to combine features that reflect user relevance. 

• Commercial web search engines combine evidence from 
hundreds of features to generate a ranking score for each 
web page. 

➡ Page content, page metadata, anchor text, links (e.g. 
PageRank), and user behavior (click logs) 

➡ Page metadata – e.g. “age,” how often it is updated, 
the URL of the page, the domain name of its site, and 
the amount of text content



Search Engine Optimization
• SEO: Understanding the relative importance of the 

many features used in search and how they can be 
manipulated to obtain better search rankings for a web 
page 

➡ e.g., improve the text used in the title tag, improve 
the text in heading tags, make sure that the domain 
name and URL contain important keywords, and try 
to improve the anchor text and link structure 

➡ Some of these techniques are regarded as not 
appropriate by search engine companies



Web Search
• In TREC evaluations, the most effective features for 

navigational search are: 

➡ Text in the title, body, and heading (h1, h2, h3, and h4), the 
anchor text of all links pointing to the document, the 
PageRank number, and the in-link count 

• Given the size of Web, many pages will contain all query 
terms 

➡ Ranking algorithms focus on discriminating between these 
pages 

➡ Word proximity is important



Term Proximity
• Many models have been developed 

• N-grams are commonly used in commercial web 
search 

• Dependence model based on inference net has been 
effective in TREC - e.g.



Example Web Query
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Machine Learning and IR
• Considerable interaction between these fields 

➡ Rocchio algorithm (60s) is a simple learning approach 

➡ 80s, 90s: learning ranking algorithms based on user 
feedback 

➡ 2000s: text categorization 

• Limited mainly by the amount of training data 

• Web query logs have generated new wave of research 

➡ e.g., “Learning to Rank”



Generative vs. Discriminative
• All of the probabilistic retrieval models presented so 

far fall into the category of generative models 

➡ A generative model assumes that documents were 
generated from some underlying model (in this case, 
usually a multinomial distribution) and uses training 
data to estimate the parameters of the model 

➡ The probability of belonging to a class (i.e. the 
relevant documents for a query) is then estimated 
using Bayes’ Rule and the document model



Generative vs. Discriminative
• A discriminative model estimates the probability of 

belonging to a class directly from the observed 
features of the document based on the training data 

• Generative models perform well with low numbers of 
training examples 

• Discriminative models usually have the advantage 
given enough training data 

➡ Can also easily incorporate many features



Discriminative Models for IR
• Discriminative models can be trained using explicit 

relevance judgments or click data in query logs 

• There is a large class of algorithms called learning to 
rank 

➡ Learns weights on a linear (or non-linear) 
combination of features that is used to rank 
documents 

➡ Finds the best weights to optimize some chosen 
performance metric



Ranking SVM
• The training data is: 

!

➡ ri is partial rank information: If document da should be 
ranked higher than db, then 

➡ This partial rank information generally comes from relevance 
judgments (allows multiple levels of relevance) or click data 

➡ If d1, d2  and d3 are the documents in the first, second and 
third rank of the search output, but only d3 was clicked: → 
(d3, d1) and (d3, d2) will be in the desired ranking for this 
query



Ranking SVM
• Learning a linear ranking function  

➡ w is a weight vector that is adjusted by learning 

➡ da is the vector representation of the features of a 
document 

➡ non-linear functions are also used 

• Weights represent the relative importance of features 

➡ These are learned using training data 

➡ e.g.,



Ranking SVM
• The goal is to learn weights that satisfy as many of the 

following conditions as possible: 

!

!

• This can be formulated as an optimization problem, 
and a standard optimization tool can solve it.



Ranking SVM

• ξ, known as a slack variable, allows for 
misclassification of difficult or noisy training examples, 
and C is a parameter that is used to prevent overfitting



Ranking SVM
• Software is available to do optimization 

• Each pair of documents in our training data can be represented by the 
vector: 

!

• The score for this pair is: 

!

• A SVM classifier will find a w that makes the smallest score as large as 
possible 

➡ Makes the differences in scores as large as possible for the pairs of 
documents that are hardest to rank



Summary
• The best retrieval model depends on the application and 

the data available 

• An evaluation corpus (or test collection), training data, and 
user data are all critical resources 

• Open source search engines can be used to find effective 
ranking algorithms 

➡ The Galago query language makes this particularly easy 

• Language resources (e.g., a thesaurus) can make a big 
difference


